Home
Class 9
MATHS
Prove that: (a+b)^3=a^3+b^3+3a b(a+b)...

Prove that: `(a+b)^3=a^3+b^3+3a b(a+b)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA ENGLISH|Exercise All Questions|206 Videos

Similar Questions

Explore conceptually related problems

Prove that (a+b+c)^3 - a^3-b^3-c^3 = 3(a+b)(b+c)(c+a).

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that a^3+b^3+c^3-3abc=1/2(a+b+c){(a-b)^2+(b-c)^2+(c-a)^2}

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Given, (a)/(b) = (c)/(d) , prove that : (3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)

If (a-b),\ (b-c),(c-a) are in G.P. then prove that (a+b+c)^2=3(a b+b c+c a)

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)