Home
Class 9
MATHS
Find the product: (a-b-c)(a^2+b^2+c^2+a ...

Find the product: `(a-b-c)(a^2+b^2+c^2+a b+a c-b c)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA ENGLISH|Exercise All Questions|193 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA ENGLISH|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Find the product: (2a-3b-2c)(4\ a^2+\ 9\ b^2+\ 4\ c^2+\ 6\ a b-6\ b c+4c a)

Find the product of : -5a^(2)b and 4b^(2) c

Find each of the products: (7a b)xx\ (-5a b^2c)xx\ (6a b c^2)

If a ,b ,c are in G.P. then prove that (a^2+a b+b^2)/(b c+c a+a b)=(b+a)/(c+b)

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If a ,\ b ,\ c are in proportion, then (a) a^2=b c (b) b^2=a c (c) c^2=a b (d) None of these

Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)^3

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

The expression (a-b)^3+\ (b-c)^3+\ (c-a)^3 can be factorized as (a) (a-b)(b-c)(c-a) (b) 3(a-b)(b-c)(c-a) (c) -3\ (a-b)(b-c)(c-a) (d) (a+b+c)(a^2+b^2+c^2-a b-b c-c a)

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|