Home
Class 9
MATHS
Write the value of (1/2)^3+(1/3)^3-\ (5/...

Write the value of `(1/2)^3+(1/3)^3-\ (5/6)^3`

A

`5/12`

B

`(-5)/12`

C

`1/12`

D

`(-1)/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{1}{2})^3 + (\frac{1}{3})^3 - (\frac{5}{6})^3\), we can utilize the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step 1: Identify \(a\), \(b\), and \(c\) We can assign: - \(a = \frac{1}{2}\) - \(b = \frac{1}{3}\) - \(c = -\frac{5}{6}\) ### Step 2: Calculate \(a + b + c\) Now, we need to calculate \(a + b + c\): \[ a + b + c = \frac{1}{2} + \frac{1}{3} - \frac{5}{6} \] To add these fractions, we need a common denominator. The least common multiple (LCM) of 2, 3, and 6 is 6. Converting each term: \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6}, \quad -\frac{5}{6} = -\frac{5}{6} \] Now substituting: \[ a + b + c = \frac{3}{6} + \frac{2}{6} - \frac{5}{6} = \frac{3 + 2 - 5}{6} = \frac{0}{6} = 0 \] ### Step 3: Calculate \(a^2 + b^2 + c^2\) Next, we calculate \(a^2 + b^2 + c^2\): \[ a^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}, \quad b^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}, \quad c^2 = \left(-\frac{5}{6}\right)^2 = \frac{25}{36} \] Finding a common denominator for these fractions (the LCM of 4, 9, and 36 is 36): \[ \frac{1}{4} = \frac{9}{36}, \quad \frac{1}{9} = \frac{4}{36}, \quad \frac{25}{36} = \frac{25}{36} \] Adding these: \[ a^2 + b^2 + c^2 = \frac{9}{36} + \frac{4}{36} + \frac{25}{36} = \frac{9 + 4 + 25}{36} = \frac{38}{36} = \frac{19}{18} \] ### Step 4: Calculate \(ab + ac + bc\) Now we calculate \(ab + ac + bc\): \[ ab = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}, \quad ac = \frac{1}{2} \cdot -\frac{5}{6} = -\frac{5}{12}, \quad bc = \frac{1}{3} \cdot -\frac{5}{6} = -\frac{5}{18} \] Finding a common denominator for these fractions (the LCM of 6, 12, and 18 is 36): \[ \frac{1}{6} = \frac{6}{36}, \quad -\frac{5}{12} = -\frac{15}{36}, \quad -\frac{5}{18} = -\frac{10}{36} \] Adding these: \[ ab + ac + bc = \frac{6}{36} - \frac{15}{36} - \frac{10}{36} = \frac{6 - 15 - 10}{36} = \frac{-19}{36} \] ### Step 5: Substitute into the identity Now we substitute back into the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Since \(a + b + c = 0\), we have: \[ a^3 + b^3 + c^3 - 3abc = 0 \] Thus: \[ a^3 + b^3 + c^3 = 3abc \] ### Step 6: Calculate \(3abc\) Now we calculate \(3abc\): \[ abc = \frac{1}{2} \cdot \frac{1}{3} \cdot -\frac{5}{6} = -\frac{5}{36} \] So: \[ 3abc = 3 \cdot -\frac{5}{36} = -\frac{15}{36} = -\frac{5}{12} \] ### Final Answer Thus, the value of the expression \((\frac{1}{2})^3 + (\frac{1}{3})^3 - (\frac{5}{6})^3\) is: \[ \boxed{-\frac{5}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS OF REAL NUMBER

    RD SHARMA ENGLISH|Exercise All Questions|193 Videos
  • FACTORIZATION OF POLYNOMIAL

    RD SHARMA ENGLISH|Exercise All Questions|220 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (1/2)^3+\ (1/3)^3-\ \ (5/6)^3

The value of 1/2 +3/5 =

Write the value of cos^2(1/2cos^(-1)3/5)

Write the value of sin^(-1)(1/3)-cos^(-1)(-1/3) .

Write the value of cos^2(1/2cos^(-1)(3/5))

Write the value of sin(2sin^(-1)(3/5)) .

Let +_6 (addition modulo 6) be a binary operation on S={0,\ 1,\ 2,\ 3,\ 4,\ 5} . Write the value of 2+_6 4^(-1)+_6 3^(-1) .

Let +_6 (addition modulo 6) be a binary operation on S={0,\ 1,\ 2,\ 3,\ 4,\ 5} . Write the value of 2+_6 4^(-1)+_6 3^(-1) .

Given A=[(4,2,5),(2,0,3),(-1,1,0)] write the value of det. ("2AA"^(-1)) .

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

RD SHARMA ENGLISH-FACTORIZATION OF ALGEBRAIC EXPRESSIONS-All Questions
  1. If a^2+b^2+c^2=250 and a b+b c+c a=3, find a+b+c

    Text Solution

    |

  2. Write the value of 25^3-75^3+50^3

    Text Solution

    |

  3. Write the value of 48^3-30^3-18^3

    Text Solution

    |

  4. Write the value of (1/2)^3+(1/3)^3-\ (5/6)^3

    Text Solution

    |

  5. Write the value of 30^3+20^3-50^3

    Text Solution

    |

  6. The factors of a^2-1-2x-x^2 are (a)(a-x+1)(a-x-1) (b)(a+x-1)(a-x+1)...

    Text Solution

    |

  7. The factors of x^4-x^2-10x-25 are (a)(x^2+3x+5)(x^2-3x+5) (b)(x^2+3x+...

    Text Solution

    |

  8. The factors of x^2+4y^2+4y-4x y-2x-8 are (a)(x-2y-4)(x-2y+2) (b) (x...

    Text Solution

    |

  9. The factors of x^3-x^2y-x y^2+y^3 are (a(x+y)(x^2-x y+y^2) (b) (x...

    Text Solution

    |

  10. The factors of x^3-1+y^3+3x y are (a) (x-1+y)(x^2+1+y^2+x+y-x y) (...

    Text Solution

    |

  11. The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) ...

    Text Solution

    |

  12. (x+y)^3−(x−y)^3 can be factorized as   (a) 2y(3x^2+y^2) (b) 2x(3x^2...

    Text Solution

    |

  13. The factors of x^2-7x+6 are

    Text Solution

    |

  14. The expression (a-b)^3+\ (b-c)^3+\ (c-a)^3 can be factorized as (a)(a...

    Text Solution

    |

  15. The expression x^4+4 can be factorized as (a) (x^2+2x+2)(x^2-2x+2) ...

    Text Solution

    |

  16. If 3x=a+b+c , then the value of (x-a)^3+\ (x-b)^3+\ (x-c)^3-3\ (x-a)(x...

    Text Solution

    |

  17. If (x+y)^3-\ (x-y)^3-6y\ (x^2-y^2)=\ k y^3, then k= (a)1 (b) 2 (...

    Text Solution

    |

  18. If x^3-3x^2+3x+7=(x+1)(a x^2+b x+c),\ then a+b+c=

    Text Solution

    |

  19. The value of ((2. 3)^3-\ 0. 027\ )/((2. 3)^2+\ 0. 69+0. 09) is (a)2 ...

    Text Solution

    |

  20. The value of ((0. 013)^3+\ (0. 007)^3)/((0. 013)^2-\ 0. 013\ xx\ 0. 00...

    Text Solution

    |