Home
Class 10
MATHS
Prove: cos e c\ thetasqrt(1-cos^2theta)=...

Prove: `cos e c\ thetasqrt(1-cos^2theta)=1`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA ENGLISH|Exercise All Questions|366 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

Prove: (cos e c\ theta-sectheta)(cottheta-tantheta)=(cos e c\ theta+sectheta)(secthetacos e c\ theta-2)\

Prove: (sec^2theta-1)(cos e c^2theta-1)=1

Prove: tan^2thetacos^2theta=1-cos^2theta

Prove: cos e c^2theta+sec^2theta=cos e c^2thetasec^2theta

Prove: (cos e c\ theta+sintheta)(cos e c\ theta-sintheta)=cot^2theta+cos^2theta

Prove: cos e c^6theta=cot^6theta+3cot^2thetacos e c^2theta+1

If sintheta=3/4 , prove that sqrt((cos e c^2theta-cot^2theta)/(sec^2theta-1))=(sqrt(7))/3

Prove: (costheta)/(cos e c\ theta+1)+(costheta)/(cos e c\ theta-1)=2tantheta

The value of sqrt((1+costheta)/(1-costheta)) is (a) cottheta-cos e c\ theta (b) cos e c\ theta+cottheta (c) cos e c^2theta+cot^2theta (d) (cottheta+cos e c\ theta)^2

Prove that sqrt((1-cos2theta)/(1+cos2theta))=tantheta where tantheta>0