Home
Class 10
MATHS
Prove: sin^2A+1/(1+tan^2A)=1...

Prove: `sin^2A+1/(1+tan^2A)=1`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA ENGLISH|Exercise All Questions|366 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

Prove : (tan^2A)/(1+tan^2A)+(cot^2A)/(1+cot^2A)=1

Prove: (1+tan^2A)+(1+1/(tan^2A))=1/(sin^2A-sin^4A)

Prove: (1+tan^2A)+(1+1/(tan^2A))=1/(sin^2A-sin^4A)

Prove: (1-tan^2A)/(cot^2A-1)=tan^2A

If sin^4 A + sin^2 A=1 , prove that: tan^4 A - tan^2 A =1

Prove that: (1+sin2A)/(1-sin2A)=tan^(2)(pi/4+A)

Prove that : (i) (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)=1 (ii) sin^(2)theta+(1)/(1+tan^(2)theta)=1

i) Prove that: (1-sin2A)/(1+sin2A) = tan^(2)(pi/4-A) ii) If costheta=1/2(x+1/x) , then prove that: cos2theta=1/2(x^(2)+1/x^(2)) and cos3theta=1/2(x^(3)+1/x^(3))

Prove 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

If sin^4 A + sin^2 A=1 then prove that 1/(tan^4A)+1/(tan^2A)=1