Home
Class 10
MATHS
Prove: sin^2Acot^2A+cos^2Atan^2A=1...

Prove: `sin^2Acot^2A+cos^2Atan^2A=1`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA ENGLISH|Exercise All Questions|366 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(2)Acot^(2)A+cos^(2)Atan^(2)A=1 .

Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B

Prove: sin^2θ + cos^2θ =1

Prove: tan^2Asec^2B-sec^2Atan^2B=tan^2A-tan^2B

Prove the following identities: (sin^2A)/(cos^2A)+(cos^2A)/(sin^2A)=1/(sin^2Acos^2A)-2

Prove that: (sin2A)/(1+cos2A)=tanA

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove the following identities: sin^4A-cos^4A=sin^2A-cos^2A=2sin^2A-1=1-2cos^2A

Prove: ( sin 2 A)/( 1 + cos 2 A)= tan A

If A=30^(@) , then prove that : cos2A=cos^(2)A-sin^(2)A " "=(1-tan^(2)A)/(1+tan^(2)A)