Home
Class 10
MATHS
Prove: (1+cosA)/(sin^2A)=1/(1-cosA)...

Prove: `(1+cosA)/(sin^2A)=1/(1-cosA)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA ENGLISH|Exercise All Questions|366 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

Prove: (1+cosA)/(sinA)=(sinA)/(1-cosA)

cosA/(1−sinA) =

(1-cosA)/(sin A)=(sin A)/(1+cos A

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)

Prove that : (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA.

Prove: (1-cosA)/(1+cosA)=(cotA-cos e c\ A)^2

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (iv) (1+secA)/(secA)=(sin^2A)/(1-cosA)

Prove the following identities: (sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(2sin^2A-1)=2/(1-2cos^2A)

Prove the following identities: (cosA)/(1-tanA)+(sin^2A)/(sinA-cosA)=sinA+cosA

Prove the following identities: (cosA)/(1-sinA)+(sinA)/(1-cosA)+1 = (sinAcosA)/((1-sinA)(1-cosA) ((1+cotA+tanA)(sinA-cosA)/(sec^3A-cos e c^3A)=sin^2Acos^2A