Home
Class 11
MATHS
Prove that 2sin((5pi)/12)cos(pi/12)=(2+s...

Prove that `2sin((5pi)/12)cos(pi/12)=(2+sqrt3)/2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINES

    RD SHARMA ENGLISH|Exercise All Questions|493 Videos
  • TRIGONOMETRIC EQUATIONS

    RD SHARMA ENGLISH|Exercise All Questions|120 Videos

Similar Questions

Explore conceptually related problems

Prove that; 2sin((5pi)/12)sin(pi/12)=1/2

prove that : sin((5pi)/18)-cos((4pi)/9)=sqrt(3)sin(pi/9)

prove that : cos(pi/12)-sin(pi/12)=1/(sqrt(2))

Prove that: 15sin(5pi)/(12)+15cos(5pi)/(12)-20sin^3(5pi)/(12)-20cos(5pi)/(12)=0

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that: sin((3pi)/8-5)cos( pi/8+5)+cos((3pi)/8-5)sin(pi/8+5)=1

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

Prove that: 2sin^(2)((pi)/(6))+cosec^(2)((7 pi)/(6))cos^(2)((pi)/(3))=(3)/(2)