Home
Class 11
MATHS
The smallest positive angle (in degree) ...

The smallest positive angle (in degree) which satisfies the equation `2sin^2theta+sqrt(3)costheta+1=0` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\sin^2\theta + \sqrt{3}\cos\theta + 1 = 0 \), we will follow these steps: ### Step 1: Rewrite the equation using the Pythagorean identity We know that \( \sin^2\theta = 1 - \cos^2\theta \). Therefore, we can substitute \( \sin^2\theta \) in the equation: \[ 2(1 - \cos^2\theta) + \sqrt{3}\cos\theta + 1 = 0 \] ### Step 2: Simplify the equation Expanding the equation gives: \[ 2 - 2\cos^2\theta + \sqrt{3}\cos\theta + 1 = 0 \] Combining like terms results in: \[ -2\cos^2\theta + \sqrt{3}\cos\theta + 3 = 0 \] ### Step 3: Multiply through by -1 To make the leading coefficient positive, we multiply the entire equation by -1: \[ 2\cos^2\theta - \sqrt{3}\cos\theta - 3 = 0 \] ### Step 4: Use the quadratic formula This is a quadratic equation in the form \( A\cos^2\theta + B\cos\theta + C = 0 \), where \( A = 2 \), \( B = -\sqrt{3} \), and \( C = -3 \). We can apply the quadratic formula: \[ \cos\theta = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \] Substituting the values: \[ \cos\theta = \frac{\sqrt{3} \pm \sqrt{(\sqrt{3})^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2} \] ### Step 5: Calculate the discriminant Calculating the discriminant: \[ (\sqrt{3})^2 - 4 \cdot 2 \cdot (-3) = 3 + 24 = 27 \] ### Step 6: Substitute back into the formula Now substituting back into the formula: \[ \cos\theta = \frac{\sqrt{3} \pm \sqrt{27}}{4} = \frac{\sqrt{3} \pm 3\sqrt{3}}{4} \] ### Step 7: Simplify the results This gives us two cases: 1. \( \cos\theta = \frac{4\sqrt{3}}{4} = \sqrt{3} \) (not possible since \( \cos\theta \) cannot exceed 1) 2. \( \cos\theta = \frac{-2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2} \) ### Step 8: Determine the angle for \( \cos\theta = -\frac{\sqrt{3}}{2} \) The cosine value of \( -\frac{\sqrt{3}}{2} \) corresponds to angles in the second and third quadrants. The reference angle is \( \frac{\pi}{6} \). Thus: \[ \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \quad \text{(in the second quadrant)} \] ### Step 9: Convert to degrees To find the smallest positive angle in degrees: \[ \theta = \frac{5\pi}{6} \times \frac{180}{\pi} = 150^\circ \] ### Final Answer The smallest positive angle \( \theta \) that satisfies the equation is: \[ \boxed{150^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • TRANSFORMATION FORMULAE

    RD SHARMA ENGLISH|Exercise All Questions|145 Videos
  • TRIGONOMETRIC FUNCTIONS

    RD SHARMA ENGLISH|Exercise All Questions|166 Videos

Similar Questions

Explore conceptually related problems

2sin^(2)theta + 3 costheta =0

Determine the smallest positive value of (32x)/(pi) which satisfy the equation sqrt(1+sin 2x)-sqrt(2)cos 3x=0

Solve the following equation: sin2theta+costheta=0

Determine the smallest positive value of x which satisfy the equation sqrt(1+sin2x)-sqrt(2)cos3x=0

Determine the smallest positive value of x which satisfy the equation sqrt(1+sin2x)-sqrt(2)cos3x=0

Solve the following equation: sin^2theta-costheta=1/4

Find the general value of theta which satisfies the equation sin ^(2) theta = (3)/(4).

What is the general value of theta which satisfies both the equations sin theta =- (1)/(2) and cos theta = - (sqrt3)/(2) ?

One value of theta which satisfies the equation sin^(4)theta-2sin^(2)theta-1 lies between 0 and 2pi .

The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS-All Questions
  1. Solve the following equation: sin2theta-sin4theta+sin6theta=0

    Text Solution

    |

  2. Solve the following equation: t a ntheta+t a n2theta+t a n3theta=0

    Text Solution

    |

  3. Write the general solution of tan^2 2x=1.

    Text Solution

    |

  4. Solve the equation 5cos^2 theta+7sin^2theta-6=0

    Text Solution

    |

  5. Writhe the number of values of theta\ in\ [0,2pi] thast satisfy the eq...

    Text Solution

    |

  6. If 2sin^2theta=3\ costheta,\ w h e r e\ 0lt=thetalt=2pi, then find the...

    Text Solution

    |

  7. The smallest value of theta satisfying the equation sqrt(3)(cottheta+t...

    Text Solution

    |

  8. If costheta+sqrt(3)sintheta=2, then theta= a. pi//3 b. 2pi...

    Text Solution

    |

  9. The general solution of the equation 7cos^2theta+3sin^2theta=4 is thet...

    Text Solution

    |

  10. A solution of the equation cos^2theta+sintheta+1=0 lies in the interva...

    Text Solution

    |

  11. The number of solution in [0,pi//2] of the equation cos3xtan5x=sin7x i...

    Text Solution

    |

  12. The general value of x satisfying the equation satisfying the equati...

    Text Solution

    |

  13. The smallest positive angle (in degree) which satisfies the equation 2...

    Text Solution

    |

  14. If 4sin^2theta=1, then the values of theta are 2npi+-pi/3,\ n in Z b....

    Text Solution

    |

  15. If cottheta-tantheta=sectheta , then theta is equal to

    Text Solution

    |

  16. A value of theta satisfying costheta+sqrt(3)\ sin theta=2 is a.(5pi)/3...

    Text Solution

    |

  17. If sqrt(3)costheta+sintheta=2 , then general value of theta is:

    Text Solution

    |

  18. General solution of tan5theta=cot2theta is a. (npi)/7+pi/2^(\ ) b. the...

    Text Solution

    |

  19. The solution of the equation cos^2theta+sintheta+1=0 lies ...

    Text Solution

    |

  20. If cos theta=-1/2 and 0^@ < theta < 360^@ then the solutions are

    Text Solution

    |