Home
Class 11
MATHS
Prove that: 1/(9!)+1/(10 !)+1/(11 !)=(12...

Prove that: `1/(9!)+1/(10 !)+1/(11 !)=(122)/(11 !)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    RD SHARMA ENGLISH|Exercise All Questions|86 Videos
  • PROBABILITY

    RD SHARMA ENGLISH|Exercise All Questions|290 Videos

Similar Questions

Explore conceptually related problems

Prove that If (1)/(9!) +(1)/( 10!) =(x)/( 11!) , Find x.

If 1/(9!)+1/(10 !)=x/(11 !) , find xdot

Prove that . (sin ((1)/(10))/((1)/(10)))gt ((sin ((1)/(9)))/((1)/(9))).

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

Find the value of n if (n)/(11!) = (1)/(9!) +(1)/(10!) .

Prove that: tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)

Prove that : tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)

Evaluate: e. 3 (7)/( 9) xx 1 (11)/(25)

Prove that: tan^(-1)(2/11)+tan^(-1)(7/24) = tan^(-1)(1/2)

Compute: (11 !-10 !)/(9!)