Home
Class 11
MATHS
Prove the following: P(n , r)=ndotP(n-1,...

Prove the following: `P(n , r)=ndotP(n-1,\ r-1)`

Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    RD SHARMA ENGLISH|Exercise All Questions|86 Videos
  • PROBABILITY

    RD SHARMA ENGLISH|Exercise All Questions|290 Videos

Similar Questions

Explore conceptually related problems

Prove the following: P(n , n)=P(n , n-1)

Prove the following: P(n , r)=P(n-1, r)+rdotP(n-1,\ r-1)

Prove the following by using the principle of mathematical induction for all n in N : a+a r+a r^2+...+a r^(n-1)=(a(r^n-1))/(r-1)

Prove that P(n,r) = (n- r+1) P(n,r-1)

Prove that: P(1,1)+2. P(2,2)+3. P(3,3)++ndotP(n , n)=P(n+1,\ n+1)-1.

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

Prove that ^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Prove that .^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))