Home
Class 11
MATHS
Let n\ a n d\ r be no negative integers ...

Let `n\ a n d\ r` be no negative integers suych that `rlt=n` .Then, `\ ^n C_r+\ ^n C_(r-1)=\ ^(n+1)C_r`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

    RD SHARMA ENGLISH|Exercise All Questions|77 Videos
  • COMPLEX NUMBERS

    RD SHARMA ENGLISH|Exercise All Questions|269 Videos

Similar Questions

Explore conceptually related problems

Let n\ a n d\ r be non negative integers such that 1lt=rlt=ndot Then, \ ^n C_r=n/rdot\ \ ^(n-1)C_(r-1)\ dot

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If 1lt=rlt=n , then \ n^(n-1)C_r_ _1 =(n-r+1)\ ^n C_(r-1)dot

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

Prove by combinatorial argument that .^(n+1)C_r=^n C_r+^n C_(r-1)dot

Prove that combinatorial argument that ^n+1C_r=^n C_r+^n C_(r-1)dot

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)