Home
Class 11
MATHS
If 1lt=rlt=n , then \ n^(n-1)Cr 1 =(n-r+...

If `1lt=rlt=n ,` then `\ n^(n-1)C_r_ _1 =(n-r+1)\ ^n C_(r-1)dot`

Promotional Banner

Topper's Solved these Questions

  • BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

    RD SHARMA ENGLISH|Exercise All Questions|77 Videos
  • COMPLEX NUMBERS

    RD SHARMA ENGLISH|Exercise All Questions|269 Videos

Similar Questions

Explore conceptually related problems

Let n\ a n d\ r be non negative integers such that 1lt=rlt=ndot Then, \ ^n C_r=n/rdot\ \ ^(n-1)C_(r-1)\ dot

Prove by combinatorial argument that .^(n+1)C_r=^n C_r+^n C_(r-1)dot

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

Let n\ a n d\ r be no negative integers suych that rlt=n .Then, \ ^n C_r+\ ^n C_(r-1)=\ ^(n+1)C_r

Prove that combinatorial argument that ^n+1C_r=^n C_r+^n C_(r-1)dot

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=