Home
Class 11
MATHS
Prove that: \ ^(2n)Cn=(2^n[1. 3. 5 (2n-1...

Prove that: `\ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)`

Promotional Banner

Topper's Solved these Questions

  • BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

    RD SHARMA ENGLISH|Exercise All Questions|77 Videos
  • COMPLEX NUMBERS

    RD SHARMA ENGLISH|Exercise All Questions|269 Videos

Similar Questions

Explore conceptually related problems

Prove that: n !(n+2)=n !+(n+1)!

Prove that nP_n=2 ^nP_(n-2)

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that n! (n+2) = n! +(n+1)! .

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that : P(n,n)= 2P (n,n -2)

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

Prove that : 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6