Home
Class 11
MATHS
Prove that lim(x->a^+) [x]=[a] for all ...

Prove that `lim_(x->a^+) [x]=[a]` for all `a in R,` where [*] denotes the greatest integer

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA ENGLISH|Exercise All Questions|113 Videos
  • LINEAR INEQUATIONS

    RD SHARMA ENGLISH|Exercise All Questions|163 Videos

Similar Questions

Explore conceptually related problems

If f: R to R is defined by f(x)=x-[x]-(1)/(2) for all x in R , where [x] denotes the greatest integer function, then {x in R: f(x)=(1)/(2)} is equal to

Prove that lim_(xto2) [x] does not exists, where [.] represents the greatest integer function.

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

Prove that int_0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes the greatest integer function.

Prove that f(x) = [tan x] + sqrt(tan x - [tan x]) . (where [.] denotes greatest integer function) is continuous in [0, (pi)/(2)) .

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0) , where [x] denotes the greatest integer less than or equal to x is equal to:

Draw the graph of y=[|x|] , where [.] denotes the greatest integer function.

lim(x->a_-) {(|x|^3)/a-[x/a]^3} ,(a < 0) , where [x] denotes the greatest integer less than or equal to x is equal to:

RD SHARMA ENGLISH-LIMITS-All Questions
  1. Suppose f(x)={(a+bx, x<1), (4, x=1), (b-ax, x>1):} and if lim(xto1) f(...

    Text Solution

    |

  2. Find the left hand and right hand limits of greatest integer function ...

    Text Solution

    |

  3. Prove that lim(x->a^+) [x]=[a] for all a in R, where [*] denotes the ...

    Text Solution

    |

  4. If f is an even function, then prove that lim(x->0^-) f(x) = lim(x->0^...

    Text Solution

    |

  5. Show that ("lim")(x->0)x/(|x|) does not exist.

    Text Solution

    |

  6. Find k so that ("lim")(x->2)\ f(x) may exist, where f(x)={2x+3,\ xlt=2...

    Text Solution

    |

  7. Show that ("lim")(x->0)1/x does not exist.

    Text Solution

    |

  8. Let f(x)={x+1,\ if\ x >0, and x-1,\ if\ x<0dot Prove that ("lim")(x->1...

    Text Solution

    |

  9. Let f(x)=\ {x+5,\ if\ x >0 and x-4,\ if\ x<0 Prove that ("lim")(x->0)\...

    Text Solution

    |

  10. Find ("lim")(x->3)\ f(x) \ where\ f(x)={4,\ if\ x >3 x+1, \ if\ x<3

    Text Solution

    |

  11. Find lim(xrarr0)f(x)a n d(lim)(x-&gt;1)f(x),""""w h e r e""""f(x)=[2x+...

    Text Solution

    |

  12. Find (lim)(x->1)f(x),""w h e r e""f(x)=[x^2-1, xlt=1-x^2-1, x >1

    Text Solution

    |

  13. Evaluate ("lim")(x->0)f(x),\ w h e r e\ f(x)={(|x|)/x ,\ x!=0 , ...

    Text Solution

    |

  14. Find ("lim")(x->1^+)1/(x-1)dot

    Text Solution

    |

  15. Evaluate the following one sided limit: ("lim")(x->2^-)\ (x-3)/(x^2-4)

    Text Solution

    |

  16. Evaluate the following one sided limit: lim(x->-8^+)(2x)/(x+8)

    Text Solution

    |

  17. Evaluate the following one sided limit: ("lim")(x->pi//2^+)secx

    Text Solution

    |

  18. Evaluate the following one sided limit: ("lim")(x->-pi//2^+)(2-cotx)

    Text Solution

    |

  19. Evaluate the following one sided limit: ("lim")(x->2^+)(x-3)/(x^2-4)

    Text Solution

    |

  20. Evaluate the following one sided limit: ("lim")(x->0^+)2/(x^(1//5))

    Text Solution

    |