Home
Class 11
MATHS
Evaluate the following limit: lim(x->1)...

Evaluate the following limit:
`lim_(x->1)(1/(x^2+x-2)-x/(x^3-1))`

A

`1/3`

B

`-1/3`

C

`-1/9`

D

`1/9`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right), \] we will follow these steps: ### Step 1: Substitute \( x = 1 \) First, we will substitute \( x = 1 \) into the expression to check if we can directly evaluate the limit. \[ \frac{1}{1^2 + 1 - 2} - \frac{1}{1^3 - 1} = \frac{1}{1 + 1 - 2} - \frac{1}{1 - 1} = \frac{1}{0} - \frac{1}{0}. \] This gives us the form \(\frac{1}{0} - \frac{1}{0}\), which is an indeterminate form (infinity minus infinity). **Hint:** Check if substituting directly gives an indeterminate form, which indicates further simplification is needed. ### Step 2: Factor the denominators Next, we will factor the denominators to simplify the expression. The first denominator can be factored as follows: \[ x^2 + x - 2 = (x - 1)(x + 2). \] The second denominator can be factored using the difference of cubes: \[ x^3 - 1 = (x - 1)(x^2 + x + 1). \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the factored forms: \[ \lim_{x \to 1} \left( \frac{1}{(x - 1)(x + 2)} - \frac{x}{(x - 1)(x^2 + x + 1)} \right). \] ### Step 4: Combine the fractions To combine the fractions, we will find a common denominator, which is \((x - 1)(x + 2)(x^2 + x + 1)\): \[ \lim_{x \to 1} \left( \frac{(x^2 + x + 1) - x(x + 2)}{(x - 1)(x + 2)(x^2 + x + 1)} \right). \] ### Step 5: Simplify the numerator Now, simplify the numerator: \[ (x^2 + x + 1) - x(x + 2) = x^2 + x + 1 - (x^2 + 2x) = x^2 + x + 1 - x^2 - 2x = -x + 1. \] Thus, we can rewrite the limit as: \[ \lim_{x \to 1} \frac{-x + 1}{(x - 1)(x + 2)(x^2 + x + 1)}. \] ### Step 6: Factor out \(-1\) Notice that \(-x + 1 = -(x - 1)\). So we can factor that out: \[ \lim_{x \to 1} \frac{-(x - 1)}{(x - 1)(x + 2)(x^2 + x + 1)}. \] ### Step 7: Cancel out the common terms Now we can cancel \((x - 1)\) from the numerator and denominator: \[ \lim_{x \to 1} \frac{-1}{(x + 2)(x^2 + x + 1)}. \] ### Step 8: Substitute \( x = 1 \) again Now we can substitute \( x = 1 \): \[ \frac{-1}{(1 + 2)(1^2 + 1 + 1)} = \frac{-1}{3 \cdot 3} = \frac{-1}{9}. \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right) = -\frac{1}{9}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA ENGLISH|Exercise All Questions|113 Videos
  • LINEAR INEQUATIONS

    RD SHARMA ENGLISH|Exercise All Questions|163 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->2)(1/(x-2)-4/(x^3-2x^2))\ \

Evaluate the following limit: (lim)_(x->-1)(4x^2+2)

Evaluate the following limit: (lim)_(x->2)(1/(x-2)-2/(x^2-2x))

Evaluate the following limit: (lim)_(x->3)(1/(x-3)-2/(x^2-4x+3))

Evaluate the following limit: (lim)_(x->1)(1+(x-1)^2)/(1+x^2)

Evaluate the following limit: (lim)_(x->3)(1/(x-3)-3/(x^2-3x))

Evaluate the following limit: (lim)_(x->1)(x^2+1)/(x+1)

Evaluate the following limit: (lim)_(x->oo)(a^(1//x)-1)x

Evaluate the following limit: (lim)_(x->1)(x-1)/(sqrt(x^2+3)-2)

Evaluate the following limit: (lim)_(x->-1)(x^3-3x+1)/(x-1)

RD SHARMA ENGLISH-LIMITS-All Questions
  1. Evaluate the following limit: (lim)(x->sqrt(2))(x^2-2)/(x^2+sqrt(2)x-4...

    Text Solution

    |

  2. Evaluate the following limit: (lim)(x->sqrt(3))(x^4-9)/(x^2+4sqrt(3)x-...

    Text Solution

    |

  3. Evaluate the following limit: lim(x->1)(1/(x^2+x-2)-x/(x^3-1))

    Text Solution

    |

  4. Evaluate the following limit: (lim)(x->2)(1/(x-2)-2/(x^2-2x))

    Text Solution

    |

  5. Evaluate the following limit: (lim)(x->2)(1/(x-2)-4/(x^3-2x^2))\ \

    Text Solution

    |

  6. find lim(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

    Text Solution

    |

  7. Evaluate the following limit: lim(x->-2)(x^3+x^2+4x+12)/(x^3-3x+2)

    Text Solution

    |

  8. Evaluate the following limit: (lim)(x->3)(x^2-4x+3)/(x^2-2x-3)

    Text Solution

    |

  9. Evaluate the following limit: (lim)(x->2)(x^3-8)/(x^2-4)

    Text Solution

    |

  10. Evaluate the following limit: (lim)(x->4)(x^2-7x+12)/(x^2-3x-4)

    Text Solution

    |

  11. Evaluate the following limit: (lim)(x->5)(x^2-7x+12)/(x^2-3x-4)

    Text Solution

    |

  12. Evaluate the following limit: (lim)(x->5)(x^2-9x+20)/(x^2-6x+5)

    Text Solution

    |

  13. Evaluate the following limit: (lim)(x->5)(x^3-125)/(x^2-7x+10)

    Text Solution

    |

  14. lim(x->sqrt(3))(x^2-3)/(x^2+3sqrt(3)x-12)

    Text Solution

    |

  15. Evaluate the following limit: (lim)(x->2)(x/(x-2)-4/(x^2-2x))

    Text Solution

    |

  16. Evaluate the following limit: (lim)(x->3)(1/(x-3)-2/(x^2-4x+3))

    Text Solution

    |

  17. Evaluate the following limit: (lim)(x->0)((a+x)^2-a^2)/x

    Text Solution

    |

  18. Evaluate the following limit: (lim)(x->3)(1/(x-3)-3/(x^2-3x))

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->3)(x^2-9)(1/(x+3)+1/(x-3))

    Text Solution

    |

  20. Evaluate the following limit: (lim)(x->1)(x^4-3x^3+2)/(x^3-5x^2+3x+1)

    Text Solution

    |