Home
Class 11
MATHS
If f(x)=x sin(1/x), x!=0 then (lim)(x->0...

If `f(x)=x sin(1/x), x!=0` then `(lim)_(x->0)f(x)=`

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA ENGLISH|Exercise All Questions|113 Videos
  • LINEAR INEQUATIONS

    RD SHARMA ENGLISH|Exercise All Questions|163 Videos

Similar Questions

Explore conceptually related problems

If f(x)={xsin(1/x) ,\ x!=0, then (lim)_(x->0)f(x) equals a. 1 b . 0 c. -1 d. none of these

If f(x) =x , x 0 then lim_(x->0) f(x) is equal to

Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 is continuously differentiable function with f^(prime)(x)!=0 and satisfies f(0)=1 and f'(0)=2 then (lim)_(x->0)(f(x)-1)/x is 1//2 b. 1 c. 2 d. 0

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously differentiable function with f'(x)ne0 and satisfies f(0) = 1 and f'(0) = 2 then lim_(xrarr0) (f(x)-1)/(x) is

If alpha in(0,1) and f:R->R and lim_(x->oo)f(x)=0,lim_(x->oo)(f(x)-f(alphax))/x=0, then lim_(x->oo)f(x)/x=lambda where 2lambda+7 is

if f(x)=x^2sin(1/x) , x!=0 then the value of the function f at x=0 so that the function is continuous at x=0

If f(x) = sin^(-1) x then prove that lim_(x rarr (1^(+))/(2)) f(3x -4x^(3)) = pi - 3 lim_(x rarr (1^(+))/(2)) sin^(-1) x

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y in R^+ .If f'(1)=1,then (a)f is unbounded (b) lim_(x->0)f(1/x)=0 (c) lim_(x->0)f(1+x)/x=1 (d) lim_(x->0)x.f(x)=0

RD SHARMA ENGLISH-LIMITS-All Questions
  1. (lim)(n->oo)(1^2+2^2+3^2++n^2)/(n^3) is equal to a. 1 b . c. 1/3 d. 0

    Text Solution

    |

  2. (lim)(x->0)(sin2x)/x is equal to a. 1 b . 1/2 c. 2 d. 0

    Text Solution

    |

  3. If f(x)=x sin(1/x), x!=0 then (lim)(x->0)f(x)=

    Text Solution

    |

  4. (lim)(x->0)(1-cos2x)/x is a. 1 b . 2 c. 4 d. 0

    Text Solution

    |

  5. (lim)(x->0)x/(tanx) is a. 1 b . 0 c. 4 d. not defined

    Text Solution

    |

  6. (lim)(x->oo)(sinx)/x equals a. 1 b . 0 c. oo d. does not exist

    Text Solution

    |

  7. lim x→0 ( sin x ) / x is equal to a. 1 b . π c. x d. ...

    Text Solution

    |

  8. (lim)(x->a)(x^n-a^n)/(x-a) is equal to a. n a^n b . n a^(n-1) c. n a d...

    Text Solution

    |

  9. (lim)(x->oo)(sqrt(x^2-1))/(2x+1) is equal to a. 0 b . -1 c. 1//2 d. 1

    Text Solution

    |

  10. Evaluate the limit: ("lim")(h->0)[1/(8+h)^(1/3)-1/(2h)]

    Text Solution

    |

  11. (lim)(x->1)(sinpix)/(x-1) is equal to a. -pi b . pi c. -1/pi d. 1/pi

    Text Solution

    |

  12. (lim)(x->0)(sqrt(1+x)-1)/x is equal to a. 1 b . 0 c. 2 d. 1/2

    Text Solution

    |

  13. If f(x)={xsin(1/x) ,\ x!=0, then (lim)(x->0)f(x) equals a. 1 b . 0 c. ...

    Text Solution

    |

  14. (lim)(n->oo)(n !)/((n+1)!+n !) is equal to a. 1 b . 0 c. 2 d. 1/2

    Text Solution

    |

  15. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  16. (lim)(x->oo)a^xsin(b/(a^x)),\ a , b >1 is equal to a. b b . a c. a(log...

    Text Solution

    |

  17. (lim)(theta->pi//2)(1-sintheta)/((pi//2-theta)costheta) is equal to ...

    Text Solution

    |

  18. The value of (lim)(x->pi//2)(s e c x-t a n x) is a. 1 b . 0 c. 2 d. -1

    Text Solution

    |

  19. The value of (lim)(x->oo)(n !)/((n+1)!-(n)!) is a. 1 b . -1 c. 0 d. no...

    Text Solution

    |

  20. The value of (lim)(n->oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!) is a. 1 b . ...

    Text Solution

    |