Home
Class 12
MATHS
The function f: A->B defined by f(x)=-x^...

The function `f: A->B` defined by `f(x)=-x^2+6x-8` is a bijection, if `A=(-oo,\ 3]` and `B=(-oo,\ 1]` (b) `A=[-3,\ oo)` and `B=(-oo,\ 1]` (c) `A=(-oo,\ 3]` and `B=[1,\ oo)` (d) `A=[3,\ oo)` and `B=[1,\ oo)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|90 Videos
  • HIGHER ORDER DERIVATIVES

    RD SHARMA ENGLISH|Exercise All Questions|179 Videos

Similar Questions

Explore conceptually related problems

Let f: PvecQ defined by f(x)=4x-x^2 is a bijective function if P=[2,oo],Q in (-oo,4] b. P=[2,oo],Q in [4,oo) c. P=(-oo,2],Q in (4,oo] d. P=[-oo,2],Q in (-oo,4]

If the function f(x)=x^2-k x+5 is increasing on [2,\ 4] , then (a) k in (2,\ oo) (b) k in (-oo,\ 2) (c) k in (4,\ oo) (d) k in (-oo,\ 4)

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

The interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing is (a) ( -oo , oo ) (b) ( -oo , 0 ) (c) ( 2 , oo ) (d) ( 0 , 2 )

If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies in the interval (a) (-oo,\ 4) (b) (4,\ oo) (c) (-oo,\ 8) (d) (8,\ oo)

The interval of increase of the function f(x)=x-e^x+tan(2pi//7) is (a) (0,\ oo) (b) (-oo,\ 0) (c) (1,\ oo) (d) (-oo,\ 1)

The domain of definition of f(x)=x-3-2sqrt(x-4)-x-3+2sqrt(x-4) is a. [4,oo) b. (-oo,4] c. (4,oo) d. (-oo,4)

The set of points where the function f(x)=x|x| is differentiable is (a) (-oo,\ oo) (b) (-oo,\ 0)uu(0,\ oo) (c) (0,\ oo) (d) [0,\ oo]

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )

RD SHARMA ENGLISH-FUNCTION-All Questions
  1. The function f: R->R defined by f(x)=2^x+2^(|x|) is (a) one-one and on...

    Text Solution

    |

  2. Let the function f: R-{-b}->R-{1} be defined by f(x)=(x+a)/(x+b) , a!=...

    Text Solution

    |

  3. The function f: A->B defined by f(x)=-x^2+6x-8 is a bijection, if A=(-...

    Text Solution

    |

  4. Let A={x in R :-1lt=xlt=1}=B . Then, the mapping f: A->B given by f(...

    Text Solution

    |

  5. Let f: R->R be given by f(x)=[x]^2+[x+1]-3 , where [x] denotes the gre...

    Text Solution

    |

  6. Let M be the set of all 2xx2 matrices with entries from the set R o...

    Text Solution

    |

  7. The function f:[0,\ oo)->R given by f(x)=x/(x+1) is (a) one-one and on...

    Text Solution

    |

  8. The range of the function f(x)=\ ^(7-x)P(x-3) is (a) {1, 2, 3, 4, ...

    Text Solution

    |

  9. A function f from the set of natural numbers to integers is defined by...

    Text Solution

    |

  10. Let f be an injective map. with domain (x, y, z and range (1, 2, 3), s...

    Text Solution

    |

  11. Which of the following function from Z to itself are bijections? f(x)=...

    Text Solution

    |

  12. Let A=[-1,1]dot Then, discuss whether the following functions from A t...

    Text Solution

    |

  13. Let A{x :-1lt=xlt=1}a n df: Avec such that f(x)=x|x|, then f is (a) bi...

    Text Solution

    |

  14. If the function f: RvecA given by f(x)=(x^2)/(x^2+1) is surjection, th...

    Text Solution

    |

  15. If a function f:[2,\ oo)->R defined by f(x)=(x-1)(x-2)(x-3) is (a) one...

    Text Solution

    |

  16. The function f:[-1//2,\ 1//2]->[-pi//2,pi//2\ ] defined by f(x)=sin^(-...

    Text Solution

    |

  17. Let f : R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(...

    Text Solution

    |

  18. Let f: R-{n}->R be a function defined by f(x)=(x-m)/(x-n) such that m!...

    Text Solution

    |

  19. Let f: R->R be a function defined by f(x)=(x^2-8)/(x^2+2) . Then, f is...

    Text Solution

    |

  20. f: R->R is defined by f(x)=(e^x^2-e^-x^2)/(e^x^2+e^-x^2) is (a) one-on...

    Text Solution

    |