Home
Class 12
MATHS
Prove that: "sin"[cot^(-1){"cos"(tan^(-...

Prove that: `"sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))`` ``cos `[tan^(-1)`(cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))```

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos"[tan^(-1){"sin"(cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that : sin cot^(-1) tan cos^(-1) x=x

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove the following: "cos"{tan^(-1){sin(cot^(-1)x)}}= sqrt((1+x^2)/(2+x^2))

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .