Home
Class 12
MATHS
Evaluate : cos(2cos^(-1)x+sin^(-1)x)  a ...

Evaluate : `cos(2cos^(-1)x+sin^(-1)x)  a t x=1/5`

Text Solution

AI Generated Solution

To evaluate the expression \( \cos(2\cos^{-1}x + \sin^{-1}x) \) at \( x = \frac{1}{5} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos(2\cos^{-1}x + \sin^{-1}x) \] Using the identity \( \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \), we can rewrite \( \sin^{-1}x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : cos(2cos^(-1)x+sin^(-1)x)a tx=1/5

Evaluate: cos (2 cos ^(-1) x +sin ^(-1) x ) at x = (1)/(5).

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

If x=(1)/(5) , the value of cos(cos^(-1)x+2sin^(-1)x) is :

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

Evaluate int_(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x)/(sin(sin^(-1)x)))|dx

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Find the domain of f(x)=2cos^(-1)2x+sin^(-1)x .