Home
Class 12
MATHS
If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5p...

If `(tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8` then `x` equals

Text Solution

AI Generated Solution

To solve the equation \((\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}\), we can follow these steps: ### Step 1: Use the identity for cotangent inverse We know that: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] Substituting this into the equation gives: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5 pi^2) /8 find x.

If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

If tan^(-1)x+2cot^(-1)x=(5pi)/6 , then find x.

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

Solve for x : tan^(-1)x+2cot^(-1)x=(2pi)/3