Home
Class 12
MATHS
If sin(sin^(-1)(1/5)+cos^(-1)(x))=1 Find...

If `sin(sin^(-1)(1/5)+cos^(-1)(x))=1` Find the value of `x`.

Text Solution

AI Generated Solution

To solve the equation \( \sin(\sin^{-1}(1/5) + \cos^{-1}(x)) = 1 \), we can follow these steps: ### Step 1: Understand the equation We start with the equation: \[ \sin(\sin^{-1}(1/5) + \cos^{-1}(x)) = 1 \] This implies that the angle \( \sin^{-1}(1/5) + \cos^{-1}(x) \) must equal \( \frac{\pi}{2} \) because the sine function achieves a maximum value of 1 at \( \frac{\pi}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

If sin(sin^(-1)(1/5)+cos^(-1)x)=1 , then find the value of x.

If sin(sin^(-1)1/5+cos^(-1)x)=1 , then find the value of x.

If sin(sin^(-1)1/5+cos^(-1)x)=1, then find the value of xdot

If cos(sin^(-1)(2/5)+cos^(-1)x)=0 find the value of xdot

If cos(sin^(-1)(2/5)+cos^(-1)x)=0 find the value of xdot

If "sin"(sin^(-1)\ 1/5+cos^(-1)x)=1, then find the value of xdot

If cos((sin^(-1)2)/5+cos^(-1)x)=0 find the value of xdot

If sin(cos^(-1)(5/13)+sin^(-1)x)=1 find the value of xdot

If sin(cos^(-1)5/(13)+sin^(-1)x)=1 find the value of xdot

If sin (sin^(-1).(1)/(5) + cos^(-1) x) = 1 , then find the value of x