Home
Class 12
MATHS
Prove that : sum(m=1)^n\ \ \ tan^(-1)((2...

Prove that : `sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1

Prove that 1/(m !)^n C_0+n/((m+1)!)^n C_1+(n(n-1))/((m+2)!)^n C_2++(n(n-1)2xx1)/((m+n)!)^n C_n=((m+n+1)(m+n+2)(m+2n))/((m+n)!)

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

For any positive integer (m,n) (with ngeqm ), Let ((n),(m)) =.^nC_m Prove that ((n),(m)) + 2((n-1),(m))+3((n-2),(m))+....+(n-m+1)((m),(m)) = ((n+2),(m+2))

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}