Home
Class 12
MATHS
Sum the following series to infinity :...

Sum the following series to infinity : `tan^(-1)(1/(1+1+1^2))+tan^(-1)(1/(1+2+2^2))+tan^(-1)(1/(1+3+3^2))+.................`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan^(-1).(1)/(2)+ tan^(-1).(1)/(3) .

Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

Find the sum tan^-1 (1/(3+3.1+1^2))+tan^-1 (1/(3+3.2+2^2))+…+tan^-1 (1/(3+3n+n^2))

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot