Home
Class 12
MATHS
If ci >0 for i=1,\ 2,\ ,\ n , prove th...

If `c_i >0` for `i=1,\ 2,\ ,\ n` , prove that `tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+\ dot+``tan^(-1)(1/(c_n))`=`tan^(-1)(x/y)```

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

If c_i >0 for i=1,2,....., n prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+.........+ tan^(-1)(1/(c_n))=tan^(-1)(x/y)

tan^(-1)[(C_(1)x-y)/(c_(1)y+x)]+tan^(-1)[(C_(2)-C_(1))/(1+C_(1)C_(2))]..+tan^(-1)[(1)/(c_(n))] is equal to

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0

int(x^2+2)/(x^4+4)dx is equal to (a) 1/2tan^(-1)((x^2-2)/(2x))+c (b) 1/2tan^(-1)((2x)/(x^2+2))+c (c) 1/2tan^(-1)((2x)/(x^2-2))+c (d) 1/2tan^(-1)(x^2+2)+c

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

int(dx)/(x^2+2x+2) equals(A) xtan^(-1)(x+1)+C (B) tan^(-1)(x+1)+C (C) (x+1)tan^(-1)x+C (D) tan^(-1)x+C

In any DeltaABC , prove that ((b-c))/((b+c))=(tan""(1)/(2)(B-C))/(tan""(1)/(2)(B+C))

In a A B C , , if C is a right angle, then tan^(-1)(a/(b+c))+tan^(-1)(b/(c+a))=

If tan^(-1) ((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2

Prove that: sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15 and tan^2(sec^(-1)2)+cot^2(cos e c^(-1)3)=11