Home
Class 12
MATHS
Prove that: sin^(-1)((63)/(65))=sin^(-1)...

Prove that: `sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that : tan^(-1)(63/16)=sin^(-1)\(5/13)+cos^(-1)(3/5)

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Prove that: 2sin^(-1)(3/5)=tan^(-1)((24)/7)

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))