Home
Class 12
MATHS
Prove that : tan^(-1)(63)/(16)=sin^(-1)5...

Prove that : `tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5`

Text Solution

AI Generated Solution

To prove that \( \tan^{-1}\left(\frac{63}{16}\right) = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) \), we will start with the right-hand side and show that it simplifies to the left-hand side. ### Step 1: Define the angles Let: - \( \theta = \sin^{-1}\left(\frac{5}{13}\right) \) - \( \alpha = \cos^{-1}\left(\frac{3}{5}\right) \) ### Step 2: Find the sine and cosine values ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Prove that cos^(-1) (3/5)+cos^(-1) (12/13) +cos^(-1)(63/65)=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2