Home
Class 12
MATHS
solve:sin^-1x+sin^-1 2x=pi/3...

solve`:sin^-1x+sin^-1 2x=pi/3`

Text Solution

AI Generated Solution

To solve the equation \( \sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3} \), we can follow these steps: ### Step 1: Isolate one of the inverse sine terms We start by isolating \( \sin^{-1} 2x \): \[ \sin^{-1} 2x = \frac{\pi}{3} - \sin^{-1} x \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve sin^(-1)x > -1

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)