Home
Class 12
MATHS
Prove that cos^(-1)(4/5) + cos^(-1)((...

Prove that `cos^(-1)(4/5) + cos^(-1)((12)/(13))=cos^(-1)(33/65)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)4/5cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that cos^(-1) (3/5)+cos^(-1) (12/13) +cos^(-1)(63/65)=pi/2

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65))

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(-4/5)=tan^(-1)(-4/3)=cos^(-1)(-3/5)-pi