Home
Class 12
MATHS
Prove that:tan^(-1)sqrt(x)=1/2cos^(-1)((...

Prove that:`tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]`

Text Solution

AI Generated Solution

To prove that \( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left(\frac{1-x}{1+x}\right) \) for \( x \in [0,1] \), we can follow these steps: ### Step 1: Start with the given equation We start with the equation we need to prove: \[ \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left(\frac{1-x}{1+x}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Prove the following: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)),\ x\ \ (0,1)

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2cos^(-1)x ,\ -1/(sqrt(2))\ lt=x\ lt=1

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^2) (1+y^2))))

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^2)(1+y^2))))

Prove that 1/2 cos^(-1) ((1-x)/(1+x))=tan^(-1) sqrtx .

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0

Prove that: tan^(-1) {(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))} = pi/4-1/2\ cos^(-1)x