Home
Class 12
MATHS
If x >1 , then write the value of sin...

If `x >1` , then write the value of `sin^(-1)((2x)/(1+x^2))` in terms of `tan^(-1)x`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

Write the value of tan^(-1)(1/x) for x<0 in terms of cot^(-1)(x) .

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

write the value of sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) .

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

sin (tan ^(-1)2x)

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)x .

Differentiate sin^(-1)((2x)/(1+2x)) wrt to tan^(-1)x , -1