Home
Class 12
MATHS
If tan^(-1)x+tan^(-1)y=pi/4, then write ...

If `tan^(-1)x+tan^(-1)y=pi/4,` then write the value of `x+y+x ydot`

Text Solution

AI Generated Solution

To solve the equation \( \tan^{-1}x + \tan^{-1}y = \frac{\pi}{4} \) and find the value of \( x + y + xy \), we can follow these steps: ### Step-by-Step Solution: 1. **Use the Identity**: We know the identity for the sum of inverse tangents: \[ \tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4, then find the value of xdot

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4 , then find the value of x .

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x=y=z and xyz ≥ 3 sqrt(3) , then

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=