Home
Class 12
MATHS
Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(...

Show that `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|1443 Videos
  • LINEAR PROGRAMING

    RD SHARMA ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

xsqrt(1+2x^(2))

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

Differentiate sin^(-1)(2xsqrt(1-x^2)),

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

If sin ^(-1) x=(1)/(3) , then evaluate sin ^(-1) (2xsqrt(1-x^(2)))

Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Differentiate sin^(-1)(2xsqrt(1-x^2)),\ -1/(sqrt(2))