Home
Class 12
MATHS
Let D=|Ax x^2 1 By y^2 1 Cz z^2 1| ...

Let D`=|Ax x^2 1 By y^2 1 Cz z^2 1|` and `D1=|A B C x y z yz zx xy|` , then show that `D1=D` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Let delta=|A x x^2 1 B y y^2 1 C z z^2 1|a n d_1=|A B C x y z y z z xx y|, then show that delta = delta1

If D1=|1 1 1 x^2 y^2 z^2 x y z| and D2=|1 1 1y z z xx y x y z| , without expanding prove that D1=D2 .

If Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}| , then

If D_1=|[1, 1, 1],[x^2,y^2,z^2],[x, y, z]| and D_2=|[1, 1, 1],[yz, zx,xy], [x, y, z]| without expanding prove that D_1=D_2

If x+y+z=0,x^2+y^2+z^2=60, find xy + yz + zx

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If a = 1 + "log"_(x) yz, b = 1 + "log"_(y) zx, c =1 + "log"_(z) xy, then ab+bc+ca =

If x^(2) + y^(2) + z^(2) - xy- yz - zx = 0 , prove that : x= y = z

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal to

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Without expanding evaluate the determinant =|(265, 240, 219), (240, ...

    Text Solution

    |

  2. If D1=|1 1 1 x^2 y^2 z^2 x y z| and D2=|1 1 1y z z xx y x y z| , with...

    Text Solution

    |

  3. Let D=|Ax x^2 1 By y^2 1 Cz z^2 1| and D1=|A B C x y z yz zx xy| ...

    Text Solution

    |

  4. If A=|[a, b, c],[ x, y, z],[ p, q, r]| and B=|[q, -b, y],[ -p, a, -x...

    Text Solution

    |

  5. If A is a skew-symmetric matrix of odd order n , then |A|=O .

    Text Solution

    |

  6. Prove that: |[0,a,-b],[-a,0,-c],[ b, c,0]|=0 .

    Text Solution

    |

  7. Without expanding or evaluating show that |(0,b-a, c-a),( a-b,0,c-b)...

    Text Solution

    |

  8. Without expanding, prove that |(a+b x, c+dx, p+q x), (a x+b, c x+d, ...

    Text Solution

    |

  9. Prove that: |-a^2 ab ac ba -b^2 bc ...

    Text Solution

    |

  10. Prove that: |(1, 1, 1),( 1, 1+x,1) ,(1, 1, 1+y)|=x y .

    Text Solution

    |

  11. Evaluate: |(1,a ,a^2), (1,b,b^2) ,(1,c,c^2)| .

    Text Solution

    |

  12. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  13. Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,g...

    Text Solution

    |

  14. In a triangleABC, if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB...

    Text Solution

    |

  15. In a A B C ,if|1 1 1 1+cosA 1+cosB 1+cosC cos^2A+A cos^2B+cosB cos^2...

    Text Solution

    |

  16. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  17. If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove th...

    Text Solution

    |

  18. For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z...

    Text Solution

    |

  19. Using properties of determinants, show that |1 a a^2 -b c 1 b ...

    Text Solution

    |

  20. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |