Home
Class 12
MATHS
Prove that: |(1, 1, 1),( 1, 1+x,1) ,(1, ...

Prove that: `|(1, 1, 1),( 1, 1+x,1) ,(1, 1, 1+y)|=x y` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

If D=|(1, 1, 1), (1, 1+x, 1), (1, 1, 1+y)| for x!=0, y!=0 then D is (1) divisible by neither x nor y (2) divisible by both x and y (3) divisible by x but not y (4) divisible by y but not x

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0

Without expanding prove that: |[x+y, y+z, z+x],[z ,x, y],[1, 1 ,1]|=0 .

Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

Three points A(x_1 , y_1), B (x_2, y_2) and C(x, y) are collinear. Prove that: (x-x_1) (y_2 - y_1) = (x_2 - x_1) (y-y_1) .

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

Tangents are drawn from the points (x_(1), y_(1))" and " (x_(2), y_(2)) to the rectanguler hyperbola xy = c^(2) . The normals at the points of contact meet at the point (h, k) . Prove that h [1/x_(1) + 1/x_(2)] = k [1/y_(1)+ 1/y_(2)] .

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Without expanding, prove that |(a+b x, c+dx, p+q x), (a x+b, c x+d, ...

    Text Solution

    |

  2. Prove that: |-a^2 ab ac ba -b^2 bc ...

    Text Solution

    |

  3. Prove that: |(1, 1, 1),( 1, 1+x,1) ,(1, 1, 1+y)|=x y .

    Text Solution

    |

  4. Evaluate: |(1,a ,a^2), (1,b,b^2) ,(1,c,c^2)| .

    Text Solution

    |

  5. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  6. Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,g...

    Text Solution

    |

  7. In a triangleABC, if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB...

    Text Solution

    |

  8. In a A B C ,if|1 1 1 1+cosA 1+cosB 1+cosC cos^2A+A cos^2B+cosB cos^2...

    Text Solution

    |

  9. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  10. If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove th...

    Text Solution

    |

  11. For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z...

    Text Solution

    |

  12. Using properties of determinants, show that |1 a a^2 -b c 1 b ...

    Text Solution

    |

  13. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  14. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  15. If f(x)=|[a-1, 0,a] , [x,a-1,a], [x^2a, x, a]| , using properties of ...

    Text Solution

    |

  16. Show that: x p q p x q q q xx-p)(x^2+p x-2q^2) .

    Text Solution

    |

  17. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  18. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !|

    Text Solution

    |

  19. Prove that: |x+yx x5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  20. Show that: |[1 ,1+p,1+p+q],[2, 3+2p,1+3p+2q],[3, 6+3p,1+6p+3q]|=1 .

    Text Solution

    |