Home
Class 12
MATHS
In a triangleABC, if |(1,1,1),(1+sinA,1+...

In a `triangleABC`, if `|(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0`, then prove that `triangleABC` is an isosceles triangle.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}| =0 then Delta ABC must be .

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

In a A B C , if cosC=(sinA)/(2sinB) , prove that the triangle is isosceles.

In triangle A B C ,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

In triangle ABC, (sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

In a triangle A B C , if cos A=(sinB)/(2sinC) , show that the triangle is isosceles.

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  2. Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,g...

    Text Solution

    |

  3. In a triangleABC, if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB...

    Text Solution

    |

  4. In a A B C ,if|1 1 1 1+cosA 1+cosB 1+cosC cos^2A+A cos^2B+cosB cos^2...

    Text Solution

    |

  5. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  6. If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove th...

    Text Solution

    |

  7. For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z...

    Text Solution

    |

  8. Using properties of determinants, show that |1 a a^2 -b c 1 b ...

    Text Solution

    |

  9. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  10. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  11. If f(x)=|[a-1, 0,a] , [x,a-1,a], [x^2a, x, a]| , using properties of ...

    Text Solution

    |

  12. Show that: x p q p x q q q xx-p)(x^2+p x-2q^2) .

    Text Solution

    |

  13. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  14. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !|

    Text Solution

    |

  15. Prove that: |x+yx x5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  16. Show that: |[1 ,1+p,1+p+q],[2, 3+2p,1+3p+2q],[3, 6+3p,1+6p+3q]|=1 .

    Text Solution

    |

  17. Show that: |[a, a+b ,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]...

    Text Solution

    |

  18. Show that: |[b+c,c+a ,a+b],[ q+r, r+p, p+q],[ y+z ,z+x,x+y]|=2|[a, b, ...

    Text Solution

    |

  19. Prove that: determinant \begin{vmatrix} 1+ a & 1 & 1 \\ 1 & 1+b...

    Text Solution

    |

  20. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then find...

    Text Solution

    |