Home
Class 12
MATHS
For any scalar p prove that =|[x,x^2, 1+...

For any scalar `p` prove that `=|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z^2 ,1+p z^3]|=(1+p x y z)(x-y)(y-z)(z-x)` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

Without expanding prove that: |[x+y, y+z, z+x],[z ,x, y],[1, 1 ,1]|=0 .

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}| =(x-y)(y-z)(z-x)(x+y+z)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  2. If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove th...

    Text Solution

    |

  3. For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z...

    Text Solution

    |

  4. Using properties of determinants, show that |1 a a^2 -b c 1 b ...

    Text Solution

    |

  5. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  6. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  7. If f(x)=|[a-1, 0,a] , [x,a-1,a], [x^2a, x, a]| , using properties of ...

    Text Solution

    |

  8. Show that: x p q p x q q q xx-p)(x^2+p x-2q^2) .

    Text Solution

    |

  9. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  10. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !|

    Text Solution

    |

  11. Prove that: |x+yx x5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  12. Show that: |[1 ,1+p,1+p+q],[2, 3+2p,1+3p+2q],[3, 6+3p,1+6p+3q]|=1 .

    Text Solution

    |

  13. Show that: |[a, a+b ,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]...

    Text Solution

    |

  14. Show that: |[b+c,c+a ,a+b],[ q+r, r+p, p+q],[ y+z ,z+x,x+y]|=2|[a, b, ...

    Text Solution

    |

  15. Prove that: determinant \begin{vmatrix} 1+ a & 1 & 1 \\ 1 & 1+b...

    Text Solution

    |

  16. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then find...

    Text Solution

    |

  17. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  18. Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)...

    Text Solution

    |

  19. Show that: |1+a^2-b^2 2a b-2b2a b1-a^2+b^2 2a2b-2a1-a^2-b^2|=(1+a^2+b^...

    Text Solution

    |

  20. Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c...

    Text Solution

    |