Home
Class 12
MATHS
Show that: |[1 ,1+p,1+p+q],[2, 3+2p,1+3p...

Show that: `|[1 ,1+p,1+p+q],[2, 3+2p,1+3p+2q],[3, 6+3p,1+6p+3q]|=1` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants. Prove that |[1 ,1+p,1+p+q],[2, 3+2p,4+3p+2q],[3, 6+3p, 10+6p+3q]|=1

Using properties of determinants, prove the following: |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

Show that |(1, 1+p, 1+p+q), (2, 3+2p, 4+3p+2q), (3, 6+3p, 10+6p+3q)|=1.

Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

If x ,y \ a n d \ z are not all zero and connected by the equations a_1x+b_1y+c_1z=0,a_2x+b_2y+c_2z=0 , and (p_1+lambdaq_1)x+(p_2+lambdaq_2)+(p_3+lambdaq_3)z=0 , show that lambda=-|[a_1,b_1,c_1],[a_2,b_2,c_2],[p_1,p_2,p_3]|-:|[a_1,b_1,c_1],[a_2,b_2,c_2],[q_1,q_2,q_3]|

Show that the points P (-2, 3, 5) , Q (1, 2, 3) and R (7, 0, -1) are collinear.

In the quadratic equation x^2+(p+i q)x+3i=0,p&q are real. If the sum of the squares of the roots is 8 then: p=3,q=-1 b. p=3,q=1 c. p=-3,q=-1 d. p=-3,q=1

If the lines p_1x+q_1y=1,p_2x+q_2y=1a n dp_3x+q_3y=1, be concurrent, show that the point (p_1, q_1),(p_2, q_2)a n d(p_3, q_3) are collinear.

The value of p and q for which the function f(x)""={(sin(p+1)x+sinx)/x , x 0} is continuous for all x in R, are: (1) p=1/2, q=-3/2 (2) p=5/2, q=-1/2 (3) p=-3/2, q=1/2 (4) p=1/2, q=3/2

Find the number of distinct rational numbers x such that oltxlt1 and x=p//q , where p ,q in {1,2,3,4,5,6} .

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !|

    Text Solution

    |

  2. Prove that: |x+yx x5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  3. Show that: |[1 ,1+p,1+p+q],[2, 3+2p,1+3p+2q],[3, 6+3p,1+6p+3q]|=1 .

    Text Solution

    |

  4. Show that: |[a, a+b ,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]...

    Text Solution

    |

  5. Show that: |[b+c,c+a ,a+b],[ q+r, r+p, p+q],[ y+z ,z+x,x+y]|=2|[a, b, ...

    Text Solution

    |

  6. Prove that: determinant \begin{vmatrix} 1+ a & 1 & 1 \\ 1 & 1+b...

    Text Solution

    |

  7. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then find...

    Text Solution

    |

  8. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  9. Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)...

    Text Solution

    |

  10. Show that: |1+a^2-b^2 2a b-2b2a b1-a^2+b^2 2a2b-2a1-a^2-b^2|=(1+a^2+b^...

    Text Solution

    |

  11. Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c...

    Text Solution

    |

  12. Prove that: |a b a x+b y b c b x+c y a x+b y b x+c y0|=(b^2-a c)(a x^2...

    Text Solution

    |

  13. Without expanding the determinant, show that (a+b+c) is a factor of ...

    Text Solution

    |

  14. If a ,\ b ,\ c are roots of the equation x^3+p x+q=0 , prove that d...

    Text Solution

    |

  15. Find dy/dx if y=cos^2x

    Text Solution

    |

  16. If a+b+c!=0 and , \begin{vmatrix} a & b & c \\ b & c & a \\ ...

    Text Solution

    |

  17. If a , b , c are real numbers, prove that \begin{vmatrix} a & b & ...

    Text Solution

    |

  18. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  19. Using properties of determinants. Prove that |[3a,-a+b,-a+c], [-b+a,3b...

    Text Solution

    |

  20. Using properties of determinants, solve for x:|[a+x, a-x, a-x], [a-x...

    Text Solution

    |