Home
Class 12
MATHS
Prove that: determinant \begin{vmatrix} ...

Prove that: `determinant \begin{vmatrix} 1+ a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \\ \end{vmatrix} = abc(1+1/a + 1/b + 1/c)

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

If a , b , c are all positive and are p t h ,q th and r t h terms of a G.P., then '\begin{vmatrix} log a & p & 1 \\ log b & q & 1 \\ log c & r & 1 \\ \end{vmatrix}=0

If a+b+c!=0 and , \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix} =0 then prove that a=b=c

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

If f,g,h are the internal bisectors of a /_\ ABC then 1/f cos (A/2)+ 1/g cos (B/2) +1/h cos (C/2)= (A) 1/a+1/b-1/c (B) 1/a-1/b+1/c (C) 1/a+1/b+1/c (D) none of these

Prove that |1+a1 1 1 1 1+b1 1 1 1 1+c1 1 1 1 1+d|=a b c d(a+1/a+1/b+1/c+1/d)dot Hence find the value of the determinant if a ,b ,c , d are the roots of the equation p x^4+q x^3+r x^2+s x+t=0.

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

The value of the determinant |(1+a, 1, 1),(1, 1+a, 1),(1, 1, 1+a)| is zero if (A) a=-3 (B) a=0 (C) a=2 (D) a=1

Write the value of the determinant |[a,1,b+c], [b,1,c+a] ,[c,1,a+b]| .

If one of the roots of the equation ax^2 + bx + c = 0 be reciprocal of one of the a_1 x^2 + b_1 x + c_1 = 0 , then prove that (a a_1-c c_1)^2 =(bc_1-ab_1) (b_1c-a_1 b) .

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Show that: |[a, a+b ,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]...

    Text Solution

    |

  2. Show that: |[b+c,c+a ,a+b],[ q+r, r+p, p+q],[ y+z ,z+x,x+y]|=2|[a, b, ...

    Text Solution

    |

  3. Prove that: determinant \begin{vmatrix} 1+ a & 1 & 1 \\ 1 & 1+b...

    Text Solution

    |

  4. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then find...

    Text Solution

    |

  5. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  6. Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)...

    Text Solution

    |

  7. Show that: |1+a^2-b^2 2a b-2b2a b1-a^2+b^2 2a2b-2a1-a^2-b^2|=(1+a^2+b^...

    Text Solution

    |

  8. Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c...

    Text Solution

    |

  9. Prove that: |a b a x+b y b c b x+c y a x+b y b x+c y0|=(b^2-a c)(a x^2...

    Text Solution

    |

  10. Without expanding the determinant, show that (a+b+c) is a factor of ...

    Text Solution

    |

  11. If a ,\ b ,\ c are roots of the equation x^3+p x+q=0 , prove that d...

    Text Solution

    |

  12. Find dy/dx if y=cos^2x

    Text Solution

    |

  13. If a+b+c!=0 and , \begin{vmatrix} a & b & c \\ b & c & a \\ ...

    Text Solution

    |

  14. If a , b , c are real numbers, prove that \begin{vmatrix} a & b & ...

    Text Solution

    |

  15. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  16. Using properties of determinants. Prove that |[3a,-a+b,-a+c], [-b+a,3b...

    Text Solution

    |

  17. Using properties of determinants, solve for x:|[a+x, a-x, a-x], [a-x...

    Text Solution

    |

  18. Using properties of determinants, solve the following for x: |[x-2,...

    Text Solution

    |

  19. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  20. If a , b , c are all positive and are p t h ,q th and r t h terms of a...

    Text Solution

    |