Home
Class 12
MATHS
If a , b , c are real numbers, prove tha...

If `a , b , c` are real numbers, prove that `\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix}=`-(a+b+c)(c+b w+c w^2)(a+ bw^2+cw), where \ \ `w` is a complex cube root of unity.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

If a+b+c!=0 and , \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix} =0 then prove that a=b=c

Prove that: determinant \begin{vmatrix} 1+ a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \\ \end{vmatrix} = abc(1+1/a + 1/b + 1/c)

If a , b , c are real numbers, prove that |[a,b,c],[b,c,a],[c,a,b]|=-(a+b+c)(c+b w+c w^2)(a+b w^2+c w), where w is a complex cube root of unity.

If a , b , c are all positive and are p t h ,q th and r t h terms of a G.P., then '\begin{vmatrix} log a & p & 1 \\ log b & q & 1 \\ log c & r & 1 \\ \end{vmatrix}=0

Prove that the lines ax+by + c = 0, bx+ cy + a = 0 and cx+ay+b=0 are concurrent if a+b+c = 0 or a+b omega + c omega^(2) + c omega = 0 where omega is a complex cube root of unity .

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.

If a ,b ,c are in G.P. then prove that (a^2+a b+b^2)/(b c+c a+a b)=(b+a)/(c+b)

If A is unimodular, then which of the following is unimodular? -A b. A^(-1) c. a d jA d. omegaA , where omega is cube root of unity

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]] = (a+b+c)^3

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Find dy/dx if y=cos^2x

    Text Solution

    |

  2. If a+b+c!=0 and , \begin{vmatrix} a & b & c \\ b & c & a \\ ...

    Text Solution

    |

  3. If a , b , c are real numbers, prove that \begin{vmatrix} a & b & ...

    Text Solution

    |

  4. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  5. Using properties of determinants. Prove that |[3a,-a+b,-a+c], [-b+a,3b...

    Text Solution

    |

  6. Using properties of determinants, solve for x:|[a+x, a-x, a-x], [a-x...

    Text Solution

    |

  7. Using properties of determinants, solve the following for x: |[x-2,...

    Text Solution

    |

  8. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  9. If a , b , c are all positive and are p t h ,q th and r t h terms of a...

    Text Solution

    |

  10. If x+y+z=0 prove that | xa yb zc yc za xb zb xc ya y|=x y z|a b c...

    Text Solution

    |

  11. Prove that: |[b, c-a^2,c] ,[a-b^2,a b-c^2,c ],[a-b^2,a ,b-c^2b c-a^2a ...

    Text Solution

    |

  12. Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc...

    Text Solution

    |

  13. Find a quadratic polynomial varphi(x) whose zeros are the maximum ...

    Text Solution

    |

  14. f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,...

    Text Solution

    |

  15. Let "T"r=|[r ,x,(n(n+1))/2], [2r-1,y, n^2],[ 3r-2,z,(n(3n-1))/2]| .whe...

    Text Solution

    |

  16. If "Delta"r=|[2^(r-1),2. 3^(r-1),4. 5^(r-1)],[x, y ,z],[2^n-1, 3^n-1, ...

    Text Solution

    |

  17. If m is a positive integer and Dr=|(2r-1,\ ^m Cr,1),(m^2-1, 2^m ,m+1...

    Text Solution

    |

  18. Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b,...

    Text Solution

    |

  19. Without expanding,FIND "Delta"=|(((a-x)^2),((a-y)^2),((a-z)^2)),(((b-x...

    Text Solution

    |

  20. Prove that: |(-2a , a+b, a+c),( b+a,-2b, b+c),( c+a , c+b,-2c)|=4(a+b...

    Text Solution

    |