Home
Class 12
MATHS
Without expanding, show that the value...

Without expanding, show that the value of the following determinant is zero: `|[49, 1, 6], [39, 7, 4], [26, 2, 3]|`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Without expanding, show that the value of each of the following determinants is zero: |1^2 2^2 3^2 4^2\ \ \ 2^2 3^2 4^2 5^2\ \ \ 3^2 4^2 5^2 6^2\ \ \ 4^2 5^2 6^2 7^2| (ii) |a b c a+2x b+2y c+2z x y z| (iii) |(2^x+2^(-x))^2(2^x-2^(-x))^2 1(3^x+3^(-x))^2(3^x-3^(-x))^2 1(4^x+4^(-x))^2(4^x-4^(-x))^2 1|

Write the value of the following determinant: |[102, 18, 36],[ 1, 3, 4],[17, 3, 6]|

Write the value of the following determinant: |[102, 18, 36],[ 1, 3, 4],[17, 3, 6]|

Find the values of the following determinants |{:(3,4),(1,2):}|

Without expanding, show that the value of each of the following determinant is zero: \begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \\ \end{vmatrix}

Without expanding, show that the value of each of the following determinants is zero: |1//a , a^2b c1//bb^2a c1//cc^2a b| (ii) |a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b| (iii) |1a a^2 1bb^2 1cc^2\ \ \ -b c-a c-a b|

Without expanding, show that the value of each of the determinants is zero: |[1,a, a^2-bc],[1,b,b^2-ac],[1,c,c^2-ab]|

Without expanding, show that the value of the following determinant is zero: |[sinalpha,cosalpha,cos(a+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]|

Without expanding at any stage, prove that the value of each of the following determinants is zero. (1) |[0,p-q,p-r],[q-p,0,q-r],[r-p,r-q,0]| (2) |[41,1,5],[79,7,9],[29,5,3]| (3) |[1,w,w^2],[w,w^2,1],[w^2,1,w]| , where w is cube root of unity

Without expanding, show that the value of each of the determinants is zero: |1/a a^2 bc 1/b b^2 ac 1/c c^2 ab|

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Without expanding, show that the value of each of the following dete...

    Text Solution

    |

  2. Without expanding, show that the value of each of the following dete...

    Text Solution

    |

  3. Without expanding, show that the value of the following determinant ...

    Text Solution

    |

  4. Without expanding, show that the value of each of the following det...

    Text Solution

    |

  5. Without expanding, show that the value of the following determinant...

    Text Solution

    |

  6. Without expanding, show that the value of each of the following dete...

    Text Solution

    |

  7. Evaluate the following: |[1,a, b c],[1,b, c a],[1,c, a b]|

    Text Solution

    |

  8. Evaluate the following: |[0,x y^2,x z^2],[x^2y,0,y z^2],[x^2z, z y^2,...

    Text Solution

    |

  9. If "Delta"=|(1,x,x^2),( 1,y, y^2),( 1,z, z^2)| , "Delta"1=|(1, 1, 1),(...

    Text Solution

    |

  10. Prove:\ |(a, b, c),( a-b,b-c,c-a),( b+c,c+a, a+b)|=a^3+b^3+c^3-3a b c

    Text Solution

    |

  11. Prove: |[b+c ,a-b ,a], [c+a, b-c ,b], [a+b, c-a, c]|=3a b c-a^3-b^3-c^...

    Text Solution

    |

  12. Prove: |(a+b,b+c,c+a),( b+c,c+a, a+b),( c+a, a+b,b+c)|=2|(a, b, c),( b...

    Text Solution

    |

  13. Prove: |[a+b+2c, a, b], [c, b+c+2a, b], [c ,a ,c+a+2b]|=2(a+b+c)^3

    Text Solution

    |

  14. Prove: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  15. Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-...

    Text Solution

    |

  16. Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

    Text Solution

    |

  17. Find dy/dx if x-y+x^5=sinx

    Text Solution

    |

  18. Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z...

    Text Solution

    |

  19. Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|...

    Text Solution

    |

  20. Prove: |((a+1)(a+2),(a+2),1 ),((a+2)(a+3),(a+3),1), ((a+3)(a+4) ,(a+4)...

    Text Solution

    |