Home
Class 12
MATHS
Without expanding, show that the value...

Without expanding, show that the value of the following determinant is zero: `|[sinalpha,cosalpha,cos(a+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]|`

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Without expanding, show that the value of each of the determinants is zero: |sinalphacosalpha"cos"(alpha+delta)sinbetacosbeta"cos"(beta+delta)singammacosgamma"cos"(gamma+delta)|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

Without expanding evaluate the determinant |sinalphacosalphasin(alpha+delta)sinbetacosbetasin(beta+delta)singammacosgammasin(gamma+delta)| .

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

Evaluate Delta=|0sinalpha-cosalpha-sinalpha0sinbetacosalpha-sinbeta0|

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Without expanding, show that the value of the following determinant ...

    Text Solution

    |

  2. Without expanding, show that the value of each of the following det...

    Text Solution

    |

  3. Without expanding, show that the value of the following determinant...

    Text Solution

    |

  4. Without expanding, show that the value of each of the following dete...

    Text Solution

    |

  5. Evaluate the following: |[1,a, b c],[1,b, c a],[1,c, a b]|

    Text Solution

    |

  6. Evaluate the following: |[0,x y^2,x z^2],[x^2y,0,y z^2],[x^2z, z y^2,...

    Text Solution

    |

  7. If "Delta"=|(1,x,x^2),( 1,y, y^2),( 1,z, z^2)| , "Delta"1=|(1, 1, 1),(...

    Text Solution

    |

  8. Prove:\ |(a, b, c),( a-b,b-c,c-a),( b+c,c+a, a+b)|=a^3+b^3+c^3-3a b c

    Text Solution

    |

  9. Prove: |[b+c ,a-b ,a], [c+a, b-c ,b], [a+b, c-a, c]|=3a b c-a^3-b^3-c^...

    Text Solution

    |

  10. Prove: |(a+b,b+c,c+a),( b+c,c+a, a+b),( c+a, a+b,b+c)|=2|(a, b, c),( b...

    Text Solution

    |

  11. Prove: |[a+b+2c, a, b], [c, b+c+2a, b], [c ,a ,c+a+2b]|=2(a+b+c)^3

    Text Solution

    |

  12. Prove: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  13. Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-...

    Text Solution

    |

  14. Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

    Text Solution

    |

  15. Find dy/dx if x-y+x^5=sinx

    Text Solution

    |

  16. Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z...

    Text Solution

    |

  17. Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|...

    Text Solution

    |

  18. Prove: |((a+1)(a+2),(a+2),1 ),((a+2)(a+3),(a+3),1), ((a+3)(a+4) ,(a+4)...

    Text Solution

    |

  19. Prove: |(a^2,a^2-(b-c)^2,b c), (b^2,b^2-(c-a)^2,c a),( c^2,c^2-(a-b)^2...

    Text Solution

    |

  20. Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-...

    Text Solution

    |