Home
Class 12
MATHS
Without expanding, show that the value...

Without expanding, show that the value of each of the following determinants is zero: `|(sqrt(23)+sqrt(3),sqrt(5),sqrt(5)),(sqrt(15)+sqrt(46),5,sqrt(10)),(3+sqrt(115),sqrt(15),5)|` .

Text Solution

Verified by Experts

We have
` Delta=|{:(sqrt(13)+sqrt(3),,2sqrt(5),,sqrt(5)),(sqrt(15)+sqrt(26),,5,,sqrt(10)),(3+ sqrt(65),,sqrt(15),,5):}|`
Taking `sqrt(5)` common from`C_(2) " and " C_(3)` we get
` Delta =(sqrt(5))^(2) |{:(sqrt(13)+sqrt(3),,2,,1),(sqrt(15)+sqrt(26),,sqrt(5),,sqrt(2)),(3+ sqrt(65),,sqrt(3),,sqrt(5)):}|`
Applying `C_(1) to C_(1) -sqrt(3)C_(2) -sqrt(13)C_(3)` we get
`|{:(-sqrt(3),,2,,1),(0,,sqrt(5),,sqrt(2)),(0,,sqrt(3),,sqrt(5)):}|`
(Expanding along `C_(1))`
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

Find the value of determinant |[sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)],[sqrt((15))+sqrt((26)),5,sqrt((10))],[3+sqrt((65)),sqrt((15)),5]|

Find the value of determinant |sqrt((13))+sqrt(3)2sqrt(5)sqrt(5)sqrt((15))+sqrt((26))5sqrt((10))3+sqrt((65))sqrt((15))5|

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Find the value of the "determinant" |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

Simplify the following expressions: (i) (3+sqrt(3))\ (3-sqrt(3)) (ii) (sqrt(5)-\ sqrt(2)\ )(sqrt(5)+sqrt(2))

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Without expanding, show that the value of each of the following det...

    Text Solution

    |

  2. Without expanding, show that the value of the following determinant...

    Text Solution

    |

  3. Without expanding, show that the value of each of the following dete...

    Text Solution

    |

  4. Evaluate the following: |[1,a, b c],[1,b, c a],[1,c, a b]|

    Text Solution

    |

  5. Evaluate the following: |[0,x y^2,x z^2],[x^2y,0,y z^2],[x^2z, z y^2,...

    Text Solution

    |

  6. If "Delta"=|(1,x,x^2),( 1,y, y^2),( 1,z, z^2)| , "Delta"1=|(1, 1, 1),(...

    Text Solution

    |

  7. Prove:\ |(a, b, c),( a-b,b-c,c-a),( b+c,c+a, a+b)|=a^3+b^3+c^3-3a b c

    Text Solution

    |

  8. Prove: |[b+c ,a-b ,a], [c+a, b-c ,b], [a+b, c-a, c]|=3a b c-a^3-b^3-c^...

    Text Solution

    |

  9. Prove: |(a+b,b+c,c+a),( b+c,c+a, a+b),( c+a, a+b,b+c)|=2|(a, b, c),( b...

    Text Solution

    |

  10. Prove: |[a+b+2c, a, b], [c, b+c+2a, b], [c ,a ,c+a+2b]|=2(a+b+c)^3

    Text Solution

    |

  11. Prove: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  12. Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-...

    Text Solution

    |

  13. Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

    Text Solution

    |

  14. Find dy/dx if x-y+x^5=sinx

    Text Solution

    |

  15. Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z...

    Text Solution

    |

  16. Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|...

    Text Solution

    |

  17. Prove: |((a+1)(a+2),(a+2),1 ),((a+2)(a+3),(a+3),1), ((a+3)(a+4) ,(a+4)...

    Text Solution

    |

  18. Prove: |(a^2,a^2-(b-c)^2,b c), (b^2,b^2-(c-a)^2,c a),( c^2,c^2-(a-b)^2...

    Text Solution

    |

  19. Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-...

    Text Solution

    |

  20. Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b...

    Text Solution

    |