Home
Class 12
MATHS
Prove: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,...

Prove: `|[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3`

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

Using the properties of determinants, prove that following |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|=(a+b+c)^3

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]] = (a+b+c)^3

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]] = (a+b+c)^3

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c)^2 then the value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

Prove: |[a+b+2c, a, b], [c, b+c+2a, b], [c ,a ,c+a+2b]|=2(a+b+c)^3

Prove the following, using properties of determinants: |[a+b+2c,a,b],[c,b+c+2a,b],[c,a,c+a+2b]|=2(a+b+c)^3

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)

Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove: |(a+b,b+c,c+a),( b+c,c+a, a+b),( c+a, a+b,b+c)|=2|(a, b, c),( b...

    Text Solution

    |

  2. Prove: |[a+b+2c, a, b], [c, b+c+2a, b], [c ,a ,c+a+2b]|=2(a+b+c)^3

    Text Solution

    |

  3. Prove: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  4. Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-...

    Text Solution

    |

  5. Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

    Text Solution

    |

  6. Find dy/dx if x-y+x^5=sinx

    Text Solution

    |

  7. Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z...

    Text Solution

    |

  8. Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|...

    Text Solution

    |

  9. Prove: |((a+1)(a+2),(a+2),1 ),((a+2)(a+3),(a+3),1), ((a+3)(a+4) ,(a+4)...

    Text Solution

    |

  10. Prove: |(a^2,a^2-(b-c)^2,b c), (b^2,b^2-(c-a)^2,c a),( c^2,c^2-(a-b)^2...

    Text Solution

    |

  11. Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-...

    Text Solution

    |

  12. Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b...

    Text Solution

    |

  13. Prove: |(x+4,x,x),(x,x+4,x),(x,x,x+4)|=16(3x+4)

    Text Solution

    |

  14. Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

    Text Solution

    |

  15. Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-...

    Text Solution

    |

  16. Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2

    Text Solution

    |

  17. Prove: |(a^2+1,a b ,a c), (a b,b^2+1,b c), (c a,cb,c^2+1)|=1+a^2+b^2...

    Text Solution

    |

  18. Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2

    Text Solution

    |

  19. Prove: |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

    Text Solution

    |

  20. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |