Home
Class 12
MATHS
Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q...

Show that `|[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants. Prove that |[1 ,1+p,1+p+q],[2, 3+2p,4+3p+2q],[3, 6+3p, 10+6p+3q]|=1

Using properties of determinants, prove the following: |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

Show that |(1, 1+p, 1+p+q), (2, 3+2p, 4+3p+2q), (3, 6+3p, 10+6p+3q)|=1.

Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

Show that the points P (-2, 3, 5) , Q (1, 2, 3) and R (7, 0, -1) are collinear.

If x ,y \ a n d \ z are not all zero and connected by the equations a_1x+b_1y+c_1z=0,a_2x+b_2y+c_2z=0 , and (p_1+lambdaq_1)x+(p_2+lambdaq_2)+(p_3+lambdaq_3)z=0 , show that lambda=-|[a_1,b_1,c_1],[a_2,b_2,c_2],[p_1,p_2,p_3]|-:|[a_1,b_1,c_1],[a_2,b_2,c_2],[q_1,q_2,q_3]|

If the lines p_1x+q_1y=1,p_2x+q_2y=1a n dp_3x+q_3y=1, be concurrent, show that the point (p_1, q_1),(p_2, q_2)a n d(p_3, q_3) are collinear.

Find the number of distinct rational numbers x such that oltxlt1 and x=p//q , where p ,q in {1,2,3,4,5,6} .

(p^^~q) is logically equal to 1. p -> q 2. ~ p->q 3. p -> ~ q 4. ~(p ->q)

In the quadratic equation x^2+(p+i q)x+3i=0,p&q are real. If the sum of the squares of the roots is 8 then: p=3,q=-1 b. p=3,q=1 c. p=-3,q=-1 d. p=-3,q=1

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b...

    Text Solution

    |

  2. Prove: |(x+4,x,x),(x,x+4,x),(x,x,x+4)|=16(3x+4)

    Text Solution

    |

  3. Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

    Text Solution

    |

  4. Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-...

    Text Solution

    |

  5. Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2

    Text Solution

    |

  6. Prove: |(a^2+1,a b ,a c), (a b,b^2+1,b c), (c a,cb,c^2+1)|=1+a^2+b^2...

    Text Solution

    |

  7. Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2

    Text Solution

    |

  8. Prove: |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

    Text Solution

    |

  9. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  10. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  11. Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

    Text Solution

    |

  12. Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b...

    Text Solution

    |

  13. Prove: |(-bc, b^2+b c,c^2+bc), (a^2+a c,-a c,c^2+a c),( a^2+a b,b^2+a ...

    Text Solution

    |

  14. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  15. show that |{:(y+k,y,y),(y,y+k,y),(y,y,y+k):}|=k^(2)(3y+k)

    Text Solution

    |

  16. Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

    Text Solution

    |

  17. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  18. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2

    Text Solution

    |

  19. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  20. show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |