Home
Class 12
MATHS
Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2...

Prove: `|[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinant : Prove that |(a^(2), 2ab, b^(2)),(b^(2),a^(2),2ab),(2ab,b^(2),a^(2))| = (a^(3) + b^(3))^(2)

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Using properties of determinants prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

|[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|=|[a,b,c],[b,c,a],[c,a,b]|^2

Prove that |axxb|^2 =a^2b^2 - (a.b)^2

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

    Text Solution

    |

  2. Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-...

    Text Solution

    |

  3. Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2

    Text Solution

    |

  4. Prove: |(a^2+1,a b ,a c), (a b,b^2+1,b c), (c a,cb,c^2+1)|=1+a^2+b^2...

    Text Solution

    |

  5. Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2

    Text Solution

    |

  6. Prove: |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

    Text Solution

    |

  7. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  8. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  9. Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

    Text Solution

    |

  10. Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b...

    Text Solution

    |

  11. Prove: |(-bc, b^2+b c,c^2+bc), (a^2+a c,-a c,c^2+a c),( a^2+a b,b^2+a ...

    Text Solution

    |

  12. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  13. show that |{:(y+k,y,y),(y,y+k,y),(y,y,y+k):}|=k^(2)(3y+k)

    Text Solution

    |

  14. Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

    Text Solution

    |

  15. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  16. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2

    Text Solution

    |

  17. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  18. show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |

  19. Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z)...

    Text Solution

    |

  20. Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)...

    Text Solution

    |