Home
Class 12
MATHS
Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, ...

Prove: `|(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinant, prove that |{:( 1,a,a^(2)),(a^(2) , 1,a),( a,a^(2),1):}|=(a^(3) -1)^(2)

Using properties of determinants, prove the following: |[1,a,a^2],[a^2,1,a],[a,a^2,1]|=(1-a^3)^2

Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Prove: |((a+1)(a+2),(a+2),1 ),((a+2)(a+3),(a+3),1), ((a+3)(a+4) ,(a+4),1) |=-2

Prove: (1+cot^2A)sin^2A=1

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2

    Text Solution

    |

  2. Prove: |(a^2+1,a b ,a c), (a b,b^2+1,b c), (c a,cb,c^2+1)|=1+a^2+b^2...

    Text Solution

    |

  3. Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2

    Text Solution

    |

  4. Prove: |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

    Text Solution

    |

  5. Prove: |[b+c,a,a],[b,c+a,b],[c,c,a+b]|=4a b c

    Text Solution

    |

  6. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  7. Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

    Text Solution

    |

  8. Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b...

    Text Solution

    |

  9. Prove: |(-bc, b^2+b c,c^2+bc), (a^2+a c,-a c,c^2+a c),( a^2+a b,b^2+a ...

    Text Solution

    |

  10. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  11. show that |{:(y+k,y,y),(y,y+k,y),(y,y,y+k):}|=k^(2)(3y+k)

    Text Solution

    |

  12. Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

    Text Solution

    |

  13. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  14. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2

    Text Solution

    |

  15. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  16. show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |

  17. Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z)...

    Text Solution

    |

  18. Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)...

    Text Solution

    |

  19. Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=...

    Text Solution

    |

  20. Show that |[x+1,x+2,x+a], [x+2,x+3,x+b],[ x+3,x+4,x+c]|=0 where a ,\ b...

    Text Solution

    |