Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that: (i) `|x+4 2x2x2xx+4 2x2x2xx+4|=(5x-4)(4-x)^2` (ii) `|y+k y y y y+k y y y y+k|=k^2(2ydotk)^2`

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

Using properties of determinants, prove the following |[x,x+y,x+2y],[x+2y,x,x+y],[x+y,x+2y,x]|=9y^2(x+y)

Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

Factorize: x^4+2x^2y^2+y^4

Given that x^2 + y^2 =4 and x^2 + y^2 -4x -4y =-4 , then x + y =

Divide: (i) x+2x^2+3x^4-x^5\ by 2x , (ii) y^4-3y^3+1/2y^2\ by 3y

Three sides of a triangle are represented by lines whose combined equation is (2x+y-4) (xy-4x-2y+8) = 0 , then the equation of its circumcircle will be : (A) x^2 + y^2 - 2x - 4y = 0 (B) x^2 + y^2 + 2x + 4y = 0 (C) x^2 + y^2 - 2x + 4y = 0 (D) x^2 + y^2 + 2x - 4y = 0

If (4x+3y)/(4x-3y)=7/4 use the properties to find the value of (2x^2-11y^2)/(2x^2+11y^2)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b...

    Text Solution

    |

  2. Prove: |(-bc, b^2+b c,c^2+bc), (a^2+a c,-a c,c^2+a c),( a^2+a b,b^2+a ...

    Text Solution

    |

  3. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  4. show that |{:(y+k,y,y),(y,y+k,y),(y,y,y+k):}|=k^(2)(3y+k)

    Text Solution

    |

  5. Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

    Text Solution

    |

  6. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  7. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2

    Text Solution

    |

  8. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  9. show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |

  10. Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z)...

    Text Solution

    |

  11. Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)...

    Text Solution

    |

  12. Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=...

    Text Solution

    |

  13. Show that |[x+1,x+2,x+a], [x+2,x+3,x+b],[ x+3,x+4,x+c]|=0 where a ,\ b...

    Text Solution

    |

  14. Show that [[x-3,x-4,x-alpha],[x-2,x-3,x-beta],[x-1,x-2,x-gamma]]=0 whe...

    Text Solution

    |

  15. If a ,\ b ,\ c are real numbers such that |(b+c,c+a ,a+b),( c+a,a+b,...

    Text Solution

    |

  16. a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-...

    Text Solution

    |

  17. Show that x=2 is a root of the equation |(x,-6,-1),( 2,-3x,x-3),(-3,...

    Text Solution

    |

  18. Solve the following determinant equation: |[x+a, b, c], [c, x+b, a],...

    Text Solution

    |

  19. Solve the following: |[x+1, 3, 5], [2,x+2, 5], [2, 3,x+4]|=0

    Text Solution

    |

  20. Solve the following: |[1, 1,x], [p+1,p+1,p+x],[3,x+1,x+2]|=0

    Text Solution

    |