Home
Class 12
MATHS
Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1...

Prove: `|(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2

Using properties of determinants prove that |(1,1, 1+3x),(1+3y,1,1),(1, 1+3z,1)| =9(3xyz+xy+yz+zx)

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

If A=[[1, 1, 1],[ 1, 1, 1],[ 1, 1, 1]] , prove that A^n=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]], n in N.

Prove that points (-3, -1), (2, -1), (1, 1) and (-2, 1) taken in order are the vertices of a trapezium.

Let A= [{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B= [{:(,2,-1,-1),(,-1,2,-1),(,-1,-1,2):}] and C=3A+7B

If A=[(1,1,1),(1,1,1),(1,1,1)] then show that A^n=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))] .

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

    Text Solution

    |

  2. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  3. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2

    Text Solution

    |

  4. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  5. show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |

  6. Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z)...

    Text Solution

    |

  7. Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)...

    Text Solution

    |

  8. Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=...

    Text Solution

    |

  9. Show that |[x+1,x+2,x+a], [x+2,x+3,x+b],[ x+3,x+4,x+c]|=0 where a ,\ b...

    Text Solution

    |

  10. Show that [[x-3,x-4,x-alpha],[x-2,x-3,x-beta],[x-1,x-2,x-gamma]]=0 whe...

    Text Solution

    |

  11. If a ,\ b ,\ c are real numbers such that |(b+c,c+a ,a+b),( c+a,a+b,...

    Text Solution

    |

  12. a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-...

    Text Solution

    |

  13. Show that x=2 is a root of the equation |(x,-6,-1),( 2,-3x,x-3),(-3,...

    Text Solution

    |

  14. Solve the following determinant equation: |[x+a, b, c], [c, x+b, a],...

    Text Solution

    |

  15. Solve the following: |[x+1, 3, 5], [2,x+2, 5], [2, 3,x+4]|=0

    Text Solution

    |

  16. Solve the following: |[1, 1,x], [p+1,p+1,p+x],[3,x+1,x+2]|=0

    Text Solution

    |

  17. If a ,b and c are all non-zero and |(1+a,1,1),( 1,1+b,1),(1,1,1+c)|=...

    Text Solution

    |

  18. Find the area of the triangle with vertices A\ (5,\ 4),\ \ B(-2,\ 4...

    Text Solution

    |

  19. Show that pointsA (a , b + c), B (b , c + a), C (c , a + b)are collin...

    Text Solution

    |

  20. If the points (a1, b1),\ \ (a2, b2) and (a1+a2,\ b1+b2) are collinear,...

    Text Solution

    |