Home
Class 12
MATHS
show that |[y+z ,x, y],[ z+x, z, x],[x+y...

show that `|[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z),(x, y,a+z)|=a^2(a+x+y+z)

Using properties of determinants, prove that |{:(y + z ,z + x ,x + y ),(z + x ,x + y ,y + z),(x + y ,y + z,z + x ):}|=2 |{:(x, y, z),(y, z, x),(z, x, y):}|= - 2 (x^(3) + y^(3) + z^(3) - 3xyz)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3 +3a^2

    Text Solution

    |

  2. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  3. show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |

  4. Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z)...

    Text Solution

    |

  5. Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)...

    Text Solution

    |

  6. Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=...

    Text Solution

    |

  7. Show that |[x+1,x+2,x+a], [x+2,x+3,x+b],[ x+3,x+4,x+c]|=0 where a ,\ b...

    Text Solution

    |

  8. Show that [[x-3,x-4,x-alpha],[x-2,x-3,x-beta],[x-1,x-2,x-gamma]]=0 whe...

    Text Solution

    |

  9. If a ,\ b ,\ c are real numbers such that |(b+c,c+a ,a+b),( c+a,a+b,...

    Text Solution

    |

  10. a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-...

    Text Solution

    |

  11. Show that x=2 is a root of the equation |(x,-6,-1),( 2,-3x,x-3),(-3,...

    Text Solution

    |

  12. Solve the following determinant equation: |[x+a, b, c], [c, x+b, a],...

    Text Solution

    |

  13. Solve the following: |[x+1, 3, 5], [2,x+2, 5], [2, 3,x+4]|=0

    Text Solution

    |

  14. Solve the following: |[1, 1,x], [p+1,p+1,p+x],[3,x+1,x+2]|=0

    Text Solution

    |

  15. If a ,b and c are all non-zero and |(1+a,1,1),( 1,1+b,1),(1,1,1+c)|=...

    Text Solution

    |

  16. Find the area of the triangle with vertices A\ (5,\ 4),\ \ B(-2,\ 4...

    Text Solution

    |

  17. Show that pointsA (a , b + c), B (b , c + a), C (c , a + b)are collin...

    Text Solution

    |

  18. If the points (a1, b1),\ \ (a2, b2) and (a1+a2,\ b1+b2) are collinear,...

    Text Solution

    |

  19. If the points (2,\ -3),\ (lambda,\ -1) and (0,\ 4) are collinear, find...

    Text Solution

    |

  20. Using determinants, find the area of the triangle whose vertices ar...

    Text Solution

    |